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LETTER TO THE EDITOR 

Mean-field solution of the statistical dislocation pile-up 
problem by means of a quantum analogy 
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$ clNFM Unita di Ricerca Milano Politecnico, 20133 Milano, Italy 

Received 26 M m h  1993 

' 

Abstract. It is shown that the thermal equilibrium dishibulion of pile-up dislocations in 
a stressed crystal w be obtained by solving self-consistently a mean-field single-particle 
Schadinger equation. This last equation is derived exactly, using a variational technique, from 
a many-particle Schrodinger equation formerly shown to be equivalent to a multivariale Fokker- 
Planck equation for the dislocation positions' join1 probabilily density. Hinging on the proved 
existence and uniqueness of the solution. a uniformly wnverging itemlive procedure has been 
built and used to find numerically the pile.up density and mean field. Analogies (and differences) 
between this problem and the iterative solution of Haruee's equations for many-electron a tom 
a x  outlined. 

There are several problems in classical statistical physics which can be modelled by means 
of generalized Langevin equations. In the case of the well known dislocation pile-up model 
(see e.g. [ I ]  and references therein) the presence of both random forces (to simulate thermal 
agitation near thermodynamic equilibrium) and dissipative forces was treated for the first 
time by one of us [2] in the frame of the associated Fokker-Planck equation 1141. The 
model describes a population of straight, parallel, inbite dislocations of either screw or edge 
character gliding on a crystal plane under the action of both internal and external forces. 
In this way the dislocation-dislocation, dislocation-phonon and dislocation-other defects 
interactions can be accounted for in a statistical treatment using the fluctuation4ssipation 
theorem. Complex real world effects, such as configurational entropy contributions related 
to the curvature of dislocation lines (loops and networks) were not taken into acco~~nt. This 
has a twofold justification. Firstly there are several physical situations where those effects 
can be neglected [I], as it has been known for many years. Secondly, if considered, the 
resulting field equations can only be contemplated with a hopeless frustration [3]. 

In a successive paper it was shown [4] that the density and the mean field of a linear 
dislocation pile-up in a stressed crystal in thermodynamic equilibrium can be obtained, at 
least in principle, by solving the many-body Schrdinger equation: 

W A Z )  = ,L!h(=) (1) 
for the ground state eigenfunction. In (1) the vector z = [.xi] represents the dislocation 
positions. $(XI is the joint probability density for x, for which a normalization condition 
holds (we neglect dislocation reactions): 

/ I$(s)lZdNz = 1. 

5 Currently at Ansaldo Energia. Pza Monumento, 2-Legnano (Milano), Italy. 
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In all equations the dimensionless variables already used in [4] have been used and 
integrals are between --oo and +m. 

U being an effective potential energy operator given by 

7-l is composed of two parts: (a) a sum of single-particle Hamiltonians ‘H&) plus (b) an 
interaction operator 7-lp(z) which, in general, is not simply a sum of two-body interactions 
x 2 b  but contains also three-particle correlations 7-lSb and interactions between particles and 
the external field ‘Hb because of the non-linear terms in (3): 

a2 ‘ 2  1 a s w  
ax! 4~ 2 axi  

“rlO(x,) = -D-+ -s (x , )  + -- 

is a dimensionless diffusion coefficient with I(. the shear modulus, U Poisson’s d o t ,  b the 
Burgers vector, KB the Boitzmann constant, and T the absolute temperature. 

is the ‘physical’ potential energy of the dislocation pile-up in the external field Val. Well 
within a crystal grain Vex, zz - x ,  as discussed in [4]. 

In this former paper an approximate procedure, founded only on physical grounds. was 
used to derive ‘single-particle’ equations from (1). Here instead we derive and solve an 
‘exact’ single-particle Schriidinger equation using a rigorous variational technique. The form 

t This is the case of edge dislocations. The screw case is recovered putting Y = 0. 
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of the mean-field potential so obtained differs for the presence of thrre-body interactions 
(generated by (8)) from standard Hamee-like equations in the quantum mechanics of 
multielectron atoms. Of course a second fundamental difference resides in the 'boson-like' 
nature of dislocations in a quasi-linear external field, as shown in [4]. It is also important to 
note that this is a concrete example where the 'effective quantum mechanics' corresponding 
to a classical statistical problem can be fully exploited [5,6],  at least as far as the ground 
state is concemed. 

We follow the original Hamee method [SI and seek a product wavefunction: 

with 

(12) 

describing the 'ground state' of the system. In fact the sole eigenfunction corresponding 
to minimum eigenvalue (A, = 0) has a physical meaning here, corresponding to 
thermodynamic equilibrium in the original physical problem [4]. It is known that A = 0 
is the exact value of A for the ground state. Equation (1 1) being an approximate solution, 
we really look for the minimum possible value of IAl which can never be exactly zero. At 
this point we make use of the boson nature of our particles in the external field - x ,  as 
discussed in [41, and put all particles in the same state (~(2;). 

Using a standard variational procedure we find the single-particle equation for the 
wavefunction 'p that minimizes the constrained functional 

B [IC('p, xi) + AN'p2(xi ) ]  dxi (13) J 
where A is now a Lagrange multiplier and 

All integrals in (14) are meant as Cauchy principal-values ones. The Euler-Lagrange 
equation takes then the form of a single-particle Schradinger equation: 

- 'Dd'~(x;)/dx? + f i ( ~ i ) ' p ( ~ i )  = Arp(xi) (15) 

where the mean-field potential 0 is given below. 
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So far we have reduced a linear many-body equation to the single-particle Schriidinger- 
like equation (15), where the mean potential f i ( x )  contains two-body, three-body and 
external field correlation terms: 

Searching for the ground state of equation (15). which again corresponds to to the minimum 
value of [AI and to the statistical equilibrium configuration of our system, is very awkward 
from an analytical point of view. Yet the exact mathematical properties of the solution 
have been found by one of us and are shown elsewhere [7]. Here, well founded on these 
results, we have adopted a numerical approach based on a successive approximation method. 
Equation (15). written in the form 

(17) 

is integrated in a sufficiently large finite range by the D02KEF Fortran routine [9] starting 
with the coefficient 

&i(x,A) = A - f i o O ( x )  (18) 

where fi0 is simply the shifted harmonic oscillator potential obtained f" (16) neglecting 
all the interaction terms. The routine calculates the normalized ground state eigenfunction 
(ool(x) and the relative eigenvalue Aol. Once 'pol is known, the routine DOIAQF [9] 
evaluates all the singular integrals contained in the complete form of the potential in a 
Cauchy principal-value sense. Therefore we obtain f i t  and, immediately 

(19) 

Repeating the procedure in an iterative way, we consmct the sequences of the successive 
approximations for the minimum eigenvalue (AoJ. for the ground state eigenfunction [mn),  
and for the self-consistent potential ( f in] .  It can be shown [7] that these sequences are 
strongly convergent to a unique limic therefore our iterative method leads to one and 
only one ground state solution. Nevertheless, the numerical results reveal that pointwise 
convergence cannot be obtained in general unless a stabilizing tool is used. We have 
chosen to iterate the up-to-dare mean of both the probability density (square of the ground 
state eigenfunction), and the potential over the values from the first up to the nth step 
of the procedure. However this trick solves the problem of numerical convergence only 
in a limited range of N and 'D values, when the ratio N / D  is small enough to allow a 
perturbative approach to equation (15). In fact, in this limit, the mean potential (16) can be 
considered as a perturbation of a shifted harmonic oscillator potential: 

Dd'(p(x)/dx' + &(x, A.)&) = 0 

& , ( x ,  A) = &, - fiO(X). 

fi&) = (1/,4'D)x2 - f (20) 

whose first-order perturbation term is: 
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So, following e.g. [IO], we obtain the first-order perturbation of the minimum eigenvalue 
as: 

A i ’  = -N/4V. (22) 

The numerical convergence limits can be stated by saying that the method works when it 
is not too far from being perturbative. In other words we meet a situation analogous to 
the Debye-Hiickel approximation for classical plasmas: thus another physical criterion of 
convergence could be that the mean potential energy per dislocation [ I l l  must be much less 
than the mean thermal energy: 

(23) 

where I is the characteristic length of the region where dislocations are located and ( r )  is 
the mean distance between neighbouring dislocations. In terms of Z, we obtain 

(dg/dN) - pb3 In(l/(r)) - pb3 In(N - 1) << KeT 

In( N - 1) << V 
which is less stringent than 1(22)1 << 1 when N is large. To characterize the speed of 
convergence we need a significant functional of the probability density. We choose the 
entropy of the distribution defined as: 

It is obvious that the ground state solution maximizes entropy, the system being isolated. 
Keeping V corstant, we noticed that, as N increased, entropy increased too, and the 
probability density became broader to denote a stronger repulsive interaction among 
dislocations. Keeping N constant, as 2, increased, entropy increased as usual when 
temperature grows. Furthermore the absolute value of the fundamental eigenvalue was 
smaller. This proves that, as temperature increases, considering a trial product wavefunction, 
where all the ‘classical particles’ are in the same quantum single-particle state, is a good 
approximation. Figure 1 shows the convergence of the method towards the self-consistent 
density in a particular case (V = 2 and N = 9). For the same values of the parameters 
figure 2 shows the behaviour of the fundamental eigenvalue as a function of the number 
of iterations. After a few iterations (about ten) no important changes take place any more 
either in eigenvalue or in eigenfunction. After 60 iterations the first seven significant figures 
of the eigenvalue remained unchanged. The entropy trend turned out to be identical. 

There exist several methods to solve the purely mechanical dislocation pile-up problem 
[ I l l .  Only a few authors have dealt with the more complex problem of finding the 
global thermodynamic equilibrium properties of the pile-up at finite temperature and 
nobody has computed the density distribution taking fluctuating forces into account [12,13]. 
Here, following the suggestion of [4], we have derived, in a rigorous variational way, 
a Schrodinger-like equation which, once solved, provides the ‘single-particle’ density of 
dislocations in thermal equilibrium in an external field. We stress the analogy we have 
stated between a classical equilibrium statistical mechanics problem and a new effective 
many-body quantum problem. Also the self-consistent method of solution we used is strictly 
analogous to the celebrated Hartree method for multielectron atoms, but differs 60m that in 
the existence of three-body interactions and in the boson nature of particles here involved. 

We conclude, pointing out that the method presented above is quite general [I41 and not 
confined to statistical physics of dislocations. In fact the quantum analogy could be taken 
further and not limited to the self-consistent mean-field approach. 
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Figure 1. hbabili ty density. square of the ground Figure 2. Fundamenlal eigenvalue versus number of 
state eigenfunction ~ ( x ) .  versus dislwation position itedons. The numerical values of parameters axe the 
x, as the iteralive method proceeds. when U = 2 and same as in figure 1. The trend of enmpy (see text) is 
N = 9. After a few iterations (about ten) subslantial quite similar. 
convergence is achieved (see text). See also figure 2 
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