IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Mean-field solution of the statistical dislocation pile-up problem by means of a quantum

analogy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 L343
(http://iopscience.iop.org/0953-8984/5/28/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 14:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Maitter § (1993} 1.343-1348. Printed in the UK
LETTER TO THE EDITOR

Mean-fieid solution of the statistical dislocation pile-up
problem by means of a quantum analogy
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i Dipartimento di Ingegneria Nucleare del Politecnico di Milano, 20133 Milano, Italy
f ¢INFM Unit3 di Ricerca Milano Politecnico, 20133 Milano, Italy :

Received 26 March 1993

Abstract, It is shown that the thermal equilibrium distribution of pile-up dislocations in
a stressed crystal can be obtained by solving self-consistently a mean-field single-particle
Schridinger equation. This last equation is derived exactly, using a variational technique, from
a many-particle Schridinger equation formerly shown ic be equivalent to a multivariate Fokker—
Planck equation for the dislocation positions’ joint probability density. Hinging on the proved
existence and uniqueness of the solution, a uniformly converging iterative procedure has been
built and vsed to find numerically the pile-up density and mean field. Analogies (and differences)
between this problem and the iterative solution of Hartree’s equations for many-electron atoms
are outlined.

There are several problems in classical statistical physics which can be modelled by means
of generalized Langevin equations. In the case of the well known dislocation pile-up model
(see e.g. [1] and references therein) the presence of both random forces (to simulate thermal
agitation near thermodynamic equilibrium) and dissipative forces was treated for the first
time by one of us [2] in the frame of the associated Fokker—Planck equation [14]. The
model describes a population of straight, parallel, infinite dislocations of either screw or edge
character gliding on a crystal plane under the action of both internal and external forces.
In this way the dislocation—dislocation, dislocation—-phonon and dislocation—other defects
interactions can be accounted for in a statistical treatment using the fluctuation—dissipation
theorem. Complex real world effects, such as configurational entropy contributions related
to the curvature of dislocation lines (loops and networks) were not taken into account. This
has a twofold justification. Firstly there are several physical situations where those effects
can be neglected 1], as it has been known for many years. Secondly, if considered, the
resulting field equations can only be contemplated with a hopeless frustration [3].

In a successive paper it was shown [4] that the density and the mean field of a linear
dislocation pile-up in a stressed crystal in thermodynamic equilibrium can be obtained, at
least in principle, by solving the many-body Schridinger equation:

Hii () = An¥n () (1)
for the ground state eigenfunction. In (1) the vector @ = [x;] represents the dislocation

positions. () is the joint probability density for &, for which a normalization condition
holds (we neglect dislocation reactions):

[ w@rds =1.
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In all equations the dimensionless variables already used in [4] have been used and
integrals are between —oo and H-oo.

N 3'2
=-’D§§;§+M(x1,...,x,v) @

I

U being an effective potential energy operator given by

1 Lavy: o1 Ly 7 |

i=l =1

‘H is composed of two parts: (z) a sum of single-particle Hamiltonians Hp(x;) plus (b) an
interaction operator Hy(x) which, in general, is not simply a sum of two-body interactions
‘Hap but contains also three-particle correlations Hsp, and interactions between particles and
the external field Hg, because of the non-linear terms in (3):

H= y Holxi) +Hp ' @
Hp =f;'22b + Mz + Hpp )
Ho(xi) =—D%~+ ra%sz(x,»n %8_‘:&"7‘1 L (6)
Hap(x) = % ,Z:: ]§N a% [%2):1—;)1} D
1 N 1NN 1
Hap(@) = 55 ; ; % ETr— ®)
I L Tt 1
Hyp(x) = T ; 8(x:) ; e ©)
In (1)9)
_ 27(1 = v)KsT

D 2N TR

ub?
is a dimensionless diffusion coefficient with y the shear madulus, v Poisson’s ratiof, b the
Burgers vector, Kg the Boitzmann constant, and T the absolute temperature,

1 N N
V(i sz, oo 20, 8) = Ve = 5 3 3 In i — 5] (10)
i=1 j#i

is the ‘physical’ potential energy of the dislocation pile-up in the external field Vg, Well
within a crystal grain Ve, = —x, as discussed in [4].

In this former paper an approximate procedure, founded only on physical grounds, was
used to derive ‘single-particie’ equations from (1). Here instead we derive and solve an
‘exact’ single-particle Schridinger equation using a rigorous variational technique. The form

t This is the case of edge dislocations. The screw case is recovered putting v = 0.
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of the mean-field potential so obtained differs for the presence of three-body interactions
(generated by (8)) from standard Hartree-like equations in the quantum mechanics of
multielectron atoms. Of course a second fundamental difference resides in the ‘boson-like’
nature of dislocations in a quasi-linear external field, as shown in [4]. It 1s also important to
note that this is a concrete example where the ‘effective quantum mechanics” corresponding
to a classical statistical problem can be fully exploited {5, 6], at least as far as the ground
state is concerned.
We follow the original Hartree method [8] and seek a product wavefunction:

N
¥(@) =[] (11)
i=1
with
f s e 2d; = 1 (12)

describing the ‘ground state” of the system. In fact the sole eigenfunction corresponding
to minimum eigenvalue (A, = 0) has a physical meaning here, cormesponding to
thermodynamic equilibrivm in the original physical problem [4]. It is known that A = 0
is the exact value of A for the ground state. Equation (11} being an approximate solution,
we really look for the minimum possible value of |A] which can never be exactly zero. At
this point we make use of the boson nature of our particles in the external field —zx, as
discussed in {4], and put all particles in the same state @(x;).

Using a standard variational procedure we find the single-particle equation for the
wavefunction ¢ that minimizes the constrained functional

B= [ [Kto.x) +20g2)] a3

where A is now a Lagrange multiplier and

Ve BpN? . 5 1, 135(x) 4
.’C(‘Pa x!) = N[D (ax‘) + (0 (xr) S ( ') + 2 a ( ')
eD)y_ - ()
+ @ N ~ 1)— U e _x‘)]
2
G2 (XN = DN — z)ffdx L DO 50)
X = Xi)(xj = Xe)
- -1— @2 (x;)
5@ GOSN - 1) f e } ”

All integrais in (14) are meant as Cauchy principal-values ones. The Euler-Lagrange
equation takes then the form of a single-particle Schridinger eguation:

— Dd(x;3/dx? + U (x)o(x) = rp(x)) (15)

where the mean-field potential J is given below,
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So far we have reduced a linear many-body equation to the single-particle Schrddinger-

like equation (15), where the mean potential {(x) contains two-body, three-body and
external field correlation terms:

. 138(x) | 2Dy~ = ¢ y)
U(x,-)—w B e N = g l:fd'x’(xj-x‘]
1 wf(xj) @*(xe)
— (N — 1)}(N —-2) | dx; dx,
-~ ée) |
755G = [ 4 16)

Searching for the ground state of equation (15), which again corresponds to to the minimum
value of [A] and to the statistical equilibrium configuration of our system, is very awkward
from an analytical point of view. Yet the exact mathematical properties of the solution
have been found by one of us and are shown elsewhere {7]. Here, well founded on these

results, we have adopted a numerical approach based on a successive approximation method.
Equation (15), written in the form

Dd’p(x)/dx? + Qx, Aye(x) = 0 a7

is integrated in a sufficiently large finite range by the DO2KEF Fortran routine [9] starting
with the coefficient

Qi(x, A) = & — Tp(x) (18)

where Uy is simply the shifted harmonic oscillator potential obtained from (16) neglecting
all the interaction terms. The routine calculates the normalized ground state eigenfunction
w1 (x) and the relative eigenvaiue Ag;. Once ¢p is known, the routine DOIAQF [9]
evaluates all the singular integrals contained in the complete form of the potential in a
Cauchy principal-value sense. Therefore we obtain U, and, immediately

Qi(x, &) = Ao — Tg(x). a9

Repeating the procedure in an iterative way, we construct the sequences of the successive
approximations for the minimum eigenvalue {Ag,}, for the ground state eigenfunction {goa},
and for the self-consistent potential (U,}. It can be shown [7] that these sequences are
strongly convergent to a unique limit; therefore our iterative method leads to one and
only one ground state solution. Nevertheless, the numerical results reveal that pointwise
convergence cannot be obtained in general unless a stabilizing tool is used. We have
chosen (o iterate the up-ro-date mean of both the probability density (square of the ground
state eigenfunction), and the potential over the values from the first up to the nth step
of the procedure. However this trick solves the problem of numerical convergence only
in a limited range of N and D values, when the ratio N/D is small enough to allow a
perturbative approach to equation (15). In fact, in this limit, the mean potential (16} can be
considered as a perturbation of a shifted harmonic oscillator potential:

(o(x) = (1/4D)x? - & (20)

whose first-order perturbation term is:

U(l)(x) — ——(N )di (%(_xxi) dx (21}
i
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So, following e.g. [10], we obtain the first-order perturbation of the minimum eigenvalue
as:

A = —N/4D. (22)

The numerical convergence limits can be stated by saying that the method works when it
is not too far from being perturbative. In other words we meet a situation analogous to
the Debye~Hiicke! approximation for classical plasmas: thus another physical criterion of
convergence could be that the mean potential energy per dislocation [11] must be much less
than the mean thermal energy:

([dT/ANY ~ ub® n(l/{r)) ~ ub® (N — 1) < KpT (23)

where [ is the characteristic length of the region where dislocations are located and {r} is
the mean distance between neighbouring dislocations. In terms of 7 we obtain

(N -1y«D (24)

which is less stringent than [(22)] « | when N is large. To characterize the speed of
convergence we need a significant functional of the probability density. We choose the
entropy of the distribution defined as:

S=-— f @*(x) In(g*(x))dx. (25)

1t is obvious that the ground state solution maximizes entropy, the system being isolated.
Keeping D constant, we noticed that, as N increased, entropy increased too, and the
probability density became broader to denote a stronger repulsive interaction among
dislocations. Keeping N constant, as D increased, entropy increased as usual when
temperature grows, Furthermore the absolute value of the fundamental eigenvalue was
smaller. This proves that, as temperature increases, considering a trial product wavefunction,
where all the ‘classical particles’ are in the same quantum single-particle state, is a good
approximation. Figure 1 shows the convergence of the method towards the self-consistent
density in a particular case (D = 2 and N = 9). For the same values of the parameters
figure 2 shows the behaviour of the fundamental eigenvalue as a function of the number
of iterations. After a few iterations (about ten) no important changes take place any more
either in eigenvalue or in eigenfunction. After 60 iterations the first seven significant figures
of the eigenvalue remained unchanged. The entropy trend tumned out to be identical.

There exist several methods to solve the purely mechanical dislocation pile-up problem
[11}. Only a few authors have dealt with the more complex problem of finding the
global thermodynamic equilibrium properties of the pile-up at finite temperature and
nobody has computed the density distribution taking fluctuating forces into account {12, 13],
Here, following the suggestion of [4], we have derived, in a rigorous variational way,
a Schridinger-like equation which, once solved, provides the ‘single-particle’ density of
dislocations in thermal equilibrium in an external field, We stress the analogy we have
stated between a classical equilibrium statistical mechanics problem and a new effective
many-body quantum problem. Also the self-consistent method of solution we used is strictly
analogous to the celebrated Hartree method for multielectron atoms, but differs from that in
the existence of three-body interactions and in the boson nature of particles here involved,

We conclude, pointing out that the method presented above is quite general [14] and not
confined to statistical physics of dislocations. In fact the quantum analogy could be taken
further and not limited to the self-consistent mean-field approach.
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Figure 1. Probability density, square of the ground Figure 2. Fundamental eigenvalue versus number of
state eigenfunction g(x), versus dislocation position  iterations. The numerical values of parameters are the
x, as the iterative method proceeds, when D = 2 and  same as in figure 1. The trend of entropy (see text) is
N = 9. After a few iterations (about ten) substantial  quite similar.

convergence is achieved (see text). See also figure 2.
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